找回密码
 注册

微信登录

微信扫一扫,快速登录

查看: 207|回复: 0

专刊征稿|AI赋能对地观测中参考数据不完整问题的应对策略

[复制链接]
发表于 2025-10-10 02:39 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册 微信登录

×
作者:微信文章
w1.jpg

w2.jpg

01

专刊缘起

Artificial Intelligence (AI) has been, and will continue to be, widely applied in aerial and satellite imaging data processing for various Earth observation (EO) tasks, including environmental monitoring, climate change analysis, and agricultural assessment. However, these AI-driven applications rely heavily on the quality and quantity of available reference data to support model training and validation. Despite the critical importance of reference data in big EO data processing, several challenges often arise, such as data inconsistencies, limited quantities, incompleteness, and temporal degradation. These challenges collectively undermine the reliability of the outputs and the overall processing chain. Therefore, addressing and mitigating these reference data issues is essential for optimizing and enhancing EO-based products.

Recognizing the increasing reliance on AI in EO, this special issue focuses on advancing methodologies for addressing and managing reference data challenges in EO applications. It brings together pioneering research, theoretical insights, and innovative case studies to promote advancements in reference data enhancement and refinement. By tackling these challenges and proposing innovative solutions, this special issue aims to improve the precision and trustworthiness of AI-driven insights, providing valuable guidance for academics, industry professionals, and policymakers.
02

征文主题

Potential topics include (but are not limited to) the following:

1. Techniques for generating synthetic data to address limited training samples;

2. Robust models for handling incomplete or unreliable reference data;

3. Strategies for transferring knowledge from well-annotated datasets to others;

4. Optimizing available reference data by selecting the most informative samples;

5. Techniques for training models on imbalanced or incomplete datasets;

6. Using physical constraints to guide learning in data-limited scenarios;

7. Identifying and addressing biases introduced by imperfect reference data;

8. Efficient workflow for spatially and/or temporally transferring available reference data;

9. Developing benchmarks for evaluating models trained on incomplete reference data.

03

提交须知

Important Dates

    1 March 2026: Deadline for paper submission online

    1 May 2026: Decision to authors

    1 July 2026: Revised paper submission

    1 September 2026: Publication


Manuscript Submission Information

Please visit the Instructions for Authors page before submitting your manuscript. Once you have finished preparing your manuscript, please submit it through the Taylor & Francis Submission Portal, ensuring that you select the appropriate Special Issue.

04

客座主编

w3.jpg
Dr. Hamid EbrahimyOsnabrück University, Germany
Email: hamid.ebrahimy@uni-osnabrueck.de

w4.jpg
Dr. Amin NabourehInstitute of Mountain Hazards and Environment, CAS
Email: aminnaboureh@imde.ac.cn

w5.jpg
Prof. Björn Waske
Osnabrück University, Germany
Email: bjoern.waske@uni-osnabrueck.de

w6.jpg

Dr. Ali Jamali

Simon Fraser University, Canada

Email: alij@sfu.ca

05

其他专刊征稿

地理大数据中的不确定性研究:进展与挑战(截止日期:2025年12月1日)
土地利用与土地覆盖监测在推动可持续发展目标中的应用(截止日期:2025年12月1日)基于对地观测和地理空间人工智能的社会科学研究(截止日期:2025年12月31日)

w7.jpg

  排版|杜小冰

  编辑|杨博锦

  校审|关琳琳

  终审|王长林

  地球大数据国际期刊

长按二维码关注我们

w8.jpg

声明

欢迎转载、转发本号的原创推文,转载前请与本号联系授权,并标注原创作者和信息来源为《地球大数据国际期刊》。
本号转载推文旨在信息传播、交流与分享,其内容由原创作者负责,不代表本号观点。文中部分图片来源于网络,如涉及作品内容、版权和其他问题,请在15日内与本号联系,我们将在第一时间处理。《地球大数据国际期刊》拥有最终解释权。
Die von den Nutzern eingestellten Information und Meinungen sind nicht eigene Informationen und Meinungen der DOLC GmbH.
您需要登录后才可以回帖 登录 | 注册 微信登录

本版积分规则

Archiver|手机版|AGB|Impressum|Datenschutzerklärung|萍聚社区-德国热线-德国实用信息网

GMT+1, 2025-10-28 00:47 , Processed in 0.123573 second(s), 31 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表